最小公倍数(Least Common Multiple)是一种数学概念,是指两个或多个整数公有的倍数中,除0以外最小的一个公倍数。 最小公倍数的求解方法有分解质因数法与公式法两种,与其相对应的概念是最大公约数。
中文名:最小公倍数
定义:几个数的最小公倍数
对象:两个及两个以上的数
外文名:Least Common Multiple
算法:借助最大公约数来计算
领域:数学
最小公倍数基本内容
定义
几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。
自然数a、b的最小公倍数可以记作,自然数a、b的最大公因数可以记作(a、b),当(a、b)=1时,= a×b。如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆。
最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。因为,素数是不能被1和自身数以外的其它数整除的数;素数X的N次方,是只能被X的N及以下次方,1和自身数整除。所以,给最小公倍数下一个定义:S个数的最小公倍数,为这S个数中所含素因子的最高次方之间的乘积。
例如:1,求756,4400,19845,9000的最小公倍数?
因756=2*2*3*3*3*7,4400=2*2*2*2*5*5*11,19845=3*3*3*3*5*7*7,9000=2*2*2*3*3*5*5*5,这里有素数2,3,5,7,11.2最高为4次方16,3最高为4次方81,5最高为3次方125,7最高为2次方49,还有素数11的最小公倍数为16*81*125*49*11=87318000.2,自然数1至50的最小公倍数,因为,√50≈7,所以,在50之内的数只有≤7的素数涉及N次方。在50之内,2的最高次方的数为32,3的最高次方的数为27,5的最高次方的数为25,7的最高次方的数为49,其余为50之内的素数。所以,1,2,3,4,5,6,…,50的最小公倍数为:32*27*25*49*11*13*17*19*23*29*31*37*41*43*47=3099044504245996706400